Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 194-197, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086230

RESUMO

Despite advances in MRI, the detection and characterisation of lymph nodes in rectal cancer remains complex, especially when assessing the response to neo-adjuvant treatment. An alternative approach is functional imaging, previously shown to aid characterization of cancer tissues. We report proof-of-concept of the novel technique Contrast-Enhanced Magneto-Motive Ultrasound (CE-MMUS) to recover information relating to local perfusion and lymphatic drainage, and interrogate tissue mechanical properties through magnetically induced tissue deformations. The feasibility of the proposed application was explored using a combination of pre-clinical ultrasound imaging and finite element analysis. First, contrast enhanced ultrasound imaging on one wild type mouse recorded lymphatic drainage of magnetic microbubbles after bolus injection. Second, preliminary CE-MMUS data were acquired as a proof of concept. Third, the magneto-mechanical interactions of a magnetic microbubble with an elastic solid were simulated using finite element software. Accumulation of magnetic microbubbles in the inguinal lymph node was verified using contrast enhanced ultrasound, with peak enhancement occurring 3.7 s post-injection. Preliminary CE-MMUS indicates the presence of magnetic contrast agent in the lymph node. The finite element analysis explores how the magnetic force is transferred to motion of the solid, which depends on elasticity and bubble radius, indicating an inverse relation with displacement. Combining magnetic microbubbles with MMUS could harness the advantages of both techniques, to provide perfusion information, robust lymph node delineation and characterisation based on mechanical properties. Clinical Relevance- Robust detection and characterisation of lymph nodes could be aided by visualising lymphatic drainage of magnetic microbubbles using contrast enhanced ultrasound imaging and magneto-motion, which is dependent on tissue mechanical properties.


Assuntos
Linfonodos , Microbolhas , Animais , Meios de Contraste/química , Linfonodos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Camundongos , Ultrassonografia/métodos
2.
Br J Radiol ; 95(1135): 20211128, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522781

RESUMO

OBJECTIVES: Despite advances in MRI the detection and characterisation of lymph nodes in rectal cancer remains complex, especially when assessing the response to neoadjuvant treatment. An alternative approach is functional imaging, previously shown to aid characterisation of cancer tissues. We report proof of concept of the novel technique Contrast-Enhanced Magneto-Motive Ultrasound (CE-MMUS) to recover information relating to local perfusion and lymphatic drainage, and interrogate tissue mechanical properties through magnetically induced deformations. METHODS: The feasibility of the proposed application was explored using a combination of experimental animal and phantom ultrasound imaging, along with finite element analysis. First, contrast-enhanced ultrasound imaging on one wild type mouse recorded lymphatic drainage of magnetic microbubbles after bolus injection. Second, tissue phantoms were imaged using MMUS to illustrate the force- and elasticity dependence of the magnetomotion. Third, the magnetomechanical interactions of a magnetic microbubble with an elastic solid were simulated using finite element software. RESULTS: Accumulation of magnetic microbubbles in the inguinal lymph node was verified using contrast enhanced ultrasound, with peak enhancement occurring 3.7 s post-injection. The magnetic microbubble gave rise to displacements depending on force, elasticity, and bubble radius, indicating an inverse relation between displacement and the latter two. CONCLUSION: Combining magnetic microbubbles with MMUS could harness the advantages of both techniques, to provide perfusion information, robust lymph node delineation and characterisation based on mechanical properties. ADVANCES IN KNOWLEDGE: (a) Lymphatic drainage of magnetic microbubbles visualised using contrast-enhanced ultrasound imaging and (b) magnetomechanical interactions between such bubbles and surrounding tissue could both contribute to (c) robust detection and characterisation of lymph nodes.


Assuntos
Meios de Contraste , Microbolhas , Animais , Meios de Contraste/química , Humanos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Camundongos , Imagens de Fantasmas , Ultrassonografia/métodos
3.
Stem Cell Reports ; 17(4): 835-848, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35276090

RESUMO

Tumor recurrence is often attributed to cancer stem cells (CSCs). We previously demonstrated that down-regulation of Pregnane X Receptor (PXR) decreases the chemoresistance of CSCs and prevents colorectal cancer recurrence. Currently, no PXR inhibitor is usable in clinic. Here, we identify miR-148a as a targetable element upstream of PXR signaling in CSCs, which when over-expressed decreases PXR expression and impairs tumor relapse after chemotherapy in mouse tumor xenografts. We then develop a fluorescent reporter screen for miR-148a activators and identify the anti-helminthic drug niclosamide as an inducer of miR-148a expression. Consequently, niclosamide decreased PXR expression and CSC numbers in colorectal cancer patient-derived cell lines and synergized with chemotherapeutic agents to prevent CSC chemoresistance and tumor recurrence in vivo. Our study suggests that endogenous miRNA inducers is a viable strategy to down-regulate PXR and illuminates niclosamide as a neoadjuvant repurposing strategy to prevent tumor relapse in colon cancer.


Assuntos
Neoplasias do Colo , MicroRNAs , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Niclosamida/metabolismo , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo
4.
Cancers (Basel) ; 14(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35158829

RESUMO

Lymph nodes (LNs) are believed to be the first organs targeted by colorectal cancer cells detached from a primary solid tumor because of their role in draining interstitial fluids. Better detection and assessment of these organs have the potential to help clinicians in stratification and designing optimal design of oncological treatments for each patient. Whilst highly valuable for the detection of primary tumors, CT and MRI remain limited for the characterization of LNs. B-mode ultrasound (US) and contrast-enhanced ultrasound (CEUS) can improve the detection of LNs and could provide critical complementary information to MRI and CT scans; however, the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) guidelines advise that further evidence is required before US or CEUS can be recommended for clinical use. Moreover, knowledge of the lymphatic system and LNs is relatively limited, especially in preclinical models. In this pilot study, we have created a mouse model of metastatic cancer and utilized 3D high-frequency ultrasound to assess the volume, shape, and absence of hilum, along with CEUS to assess the flow dynamics of tumor-free and tumor-bearing LNs in vivo. The aforementioned parameters were used to create a scoring system to predict the likelihood of a disease-involved LN before establishing post-mortem diagnosis with histopathology. Preliminary results suggest that a sum score of parameters may provide a more accurate diagnosis than the LN size, the single parameter currently used to predict the involvement of an LN in disease.

5.
Cell Adh Migr ; 12(4): 324-334, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616590

RESUMO

Discoidin domain receptors 1 and 2 (DDR1 and DDR2) are members of the tyrosine kinase receptors activated after binding with collagen. DDRs are implicated in numerous physiological and pathological functions such as proliferation, adhesion and migration. Little is known about the expression of the two receptors in normal and cancer cells and most of studies focus only on one receptor. Western blot analysis of DDR1 and DDR2 expression in different tumor cell lines shows an absence of high co-expression of the two receptors suggesting a deleterious effect of their presence at high amount. To study the consequences of high DDR1 and DDR2 co-expression in cells, we over-express the two receptors in HEK 293T cells and compare biological effects to HEK cells over-expressing DDR1 or DDR2. To distinguish between the intracellular dependent and independent activities of the two receptors we over-express an intracellular truncated dominant-negative DDR1 or DDR2 protein (DDR1DN and DDR2DN). No major differences of Erk or Jak2 activation are found after collagen I stimulation, nevertheless Erk activation is higher in cells co-expressing DDR1 and DDR2. DDR1 increases cell proliferation but co-expression of DDR1 and DDR2 is inhibitory. DDR1 but not DDR2 is implicated in cell adhesion to a collagen I matrix. DDR1, and DDR1 and DDR2 co-expression inhibit cell migration. Moreover a DDR1/DDR2 physical interaction is found by co-immunoprecipitation assays. Taken together, our results show a deleterious effect of high co-expression of DDR1 and DDR2 and a physical interaction between the two receptors.


Assuntos
Receptor com Domínio Discoidina 1/metabolismo , Receptor com Domínio Discoidina 2/metabolismo , Transdução de Sinais , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/farmacologia , Receptor com Domínio Discoidina 1/química , Receptor com Domínio Discoidina 2/química , Células HEK293 , Humanos , Fenótipo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...